Optimal Fractional Fourier Filtering for Graph Signals
نویسندگان
چکیده
Graph signal processing has recently received considerable attention. Several concepts, tools, and applications in such as filtering, transforming, sampling have been extended to graph processing. One extension is the optimal filtering problem. The minimum mean-squared error estimate of an original can be obtained from its distorted noisy version. However, best separation noise, thus least error, not always achieved ordinary Fourier domain, but rather a fractional domain. In this work, problem for signals domains, theoretical analysis solution proposed are provided along with computational cost considerations. Numerical results presented illustrate benefits domains.
منابع مشابه
Optimal filtering in fractional Fourier domains
For time-invariant degradation models and stationary signals and noise, the classical Fourier domain Wiener filter, which can be implemented in O(N logN) time, gives the minimum mean-square-error estimate of the original undistorted signal. For time-varying degradations and nonstationary processes, however, the optimal linear estimate requires O(N2) time for implementation. We consider filterin...
متن کاملGeneralized Parseval’s Theorem on Fractional Fourier Transform for Discrete Signals and Filtering of LFM Signals
This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically provide potential valuable applications in filt...
متن کاملChirp filtering in the fractional Fourier domain.
In the Wigner domain of a one-dimensional function, a certain chirp term represents a rotated line delta function. On the other hand, a fractional Fourier transform (FRT) can be associated with a rotation of the Wigner-distribution function by an angle connected with the FRT order. Thus with the FRT tool a chirp and a delta function can be transformed one into the other. Taking the chirp as add...
متن کاملFractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform
Conventional Fourier analysis has many schemes for different types of signals. They are Fourier transform (FT), Fourier series (FS), discrete-time Fourier transform (DTFT), and discrete Fourier transform (DFT). The goal of this correspondence is to develop two absent schemes of fractional Fourier analysis methods. The proposed methods are fractional Fourier series (FRFS) and discrete-time fract...
متن کاملFractional Fourier transforms of hypercomplex signals
An overview is given to a new approach for obtaining generalized Fourier transforms in the context of hypercomplex analysis (or Clifford analysis). These transforms are applicable to higher-dimensional signals with several components and are different from the classical Fourier transform in that they mix the components of the signal. Subsequently, attention is focused on the special case of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2021
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2021.3079804